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ABSTRACT A vibratory pile driver has the capability of substantially
decreasing pile installation time compared to the impact driven pile in
certain soil conditions. Despite the increased interest in the use of
this type of driver for driving and extraction, no reliable method exists
for estimating the pile's bearing capacity. Field tests were conducted
in San Diego, California in an effort to compare bearing capacity calcu-
lations for vibratory driven pile based on theoretical static analysis,
empirical analysis using cone penetrometer test data, and dynamic
driving resistance. Data obtained while driving instrumented pile is
compared with predictions obtained from an analytical model. This pre-
liminary model simulated the vibratory driver-pile-soil system. This
technical note evaluates the influence of various parameters on the
vibratory pile driving process.
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INTRODUCTION

Vibratory drivers have been used since the 1930s to drive and
extract piles. Vibratory pile drivers have the capability of signifi-
cantly decreasing pile installation time, especially in granular soils.
However, they have not been widely accepted because of the uncertainty
in estimating the bearing capacity of the driven pile. When driving
bearing piles, the standard industry method for obtaining load carrying
capacity of a pile installed with a vibratory driver is to redrive with
an impact hammer. The advantage of improved productivity is lost with
the redrive procedure. Currently, there is no other method to predict
the capacity of these bearing piles installed with a vibratory driver.
The Naval Civil Engineering Laboratory (NCEL) is making progress toward
being able to estimate the bearing capacity of these piles.

This technical note describes field testing and corresponding ana-
lytical modeling of the vibratory driver-pile-soil system. The following
sections describe the development of the numerical model and techniques
for collecting field data. A discussion of the prediction of the pile
driving process based on field test data is followed by suggestions as
to the additional work that should be done to further verify the model
to a point where it can be used with confidence.

« & v
v
1

A

BACKGROUND

The Navy uses temporary pier facilities to transfer cargo over the
surf to the beach during amphtbious operations. Pile driving is the

most time consuming activity during construction of these facilities. ﬁ;}{
The Amphibious Construction Battalions (PHIBCBs) use single-acting ::\i'
diesel hammers to install these piles. A vibratory driver is used to -:::d
extract the pile during the retrieval phase. Because they cannot rely %fi;_.j

on the vibratory driver to drive piles to a specific bearing capacity,
two pieces of equipment are necessary to handle pile installation and
extraction. A more efficient technique, such as using the vibratory
driver to both install and extract bearing piles, would both eliminate
the requirement for having two pieces of equipment to handle piles and
also improve pile installation rates.

The Mobile Construction Battalions (MCBs) have double-acting air
hammers (MKT7) and single-acting diesel hammers (MKT DE20/30). They do
a wide variety of pile driving work related to waterfront and advance
base construction. A vibratory pile driving capacity could improve
their operational capability.
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""DELING THE VIBRATORY PILE DRIVING PROCESS
Vibratory Drivers

Vibratory drivers apply a dynamic force to the pile from paired
rotating weights which are set eccentric to the center of rotation so
that when they rotate, their vertical forces are added and the horizon-
tal forces canceled. The frequency at which these drivers operate is in
the range of 18 cps to 33 cps. This frequency range produces a ground
resonance at which shear and frictional resistance of the soil are sig-
nificantly reduced (Ref 1). Vibratory driving appears to work well in
coarse-grained soils and with nondisplacement piles (Ref 2). In sand,
it is thought that the vibrated piles may have much higher bearing
values than driven piles because of the compacting effect of the
vibration (Ref 3).

In order to improve the driving effectiveness of vibratory drivers,
a sizeable "suspended" weight is usually added to the nonvibrating por-
tion of the driver. In some cases, additional static force is applied
to the top of the driver, for example, through the jib to push-drive the
pile.

Another use of the vibratory driver is in extraction of piles. In

this case, tension is applied through the jib of the crane. Occasionally,

a shock absorber will also be used to reduce the vibrations from the
driver to the boom. Vibratory drivers also allow reduced noise during
pile driving operations, controlled depth of penetration, the ability to
drive piles at inclinations of 1:1 or more, and underwater driving.
Schematic drawings of the vibratory driver as used in the different
applications are shown in Figure 1.

A resonant (sonic) vibratory driver, designed by the Bodine
Soundrive Company of California, has a variable frequency capability
within the sonic range of frequencies up to and over 100 Hz. This al-
lows the pile to be installed at its resonant frequency. The impulse of
the vibration is in phase with the elastic compression wave that travels
down the pile, and the energy is used most effectively in overcoming
friction and point resistance (Ref 4). This significantly increases the
pile movement. 1In a comparison study using two identical piles at the
same site, a steam hammer sank a pile 67 feet in 90 minutes while the
sonic hammer sank the pile 71 feet in 42 seconds. This driver is still
in the development stage and is not available for commercial use at this
time.

Generally, the loss of energy in the vibratory driver is consider-
ably less than that in a conventional hammer. In the latter, much of
the energy of the impact is dissipated in compressing the cushion blocks
and driving head, and in overcoming the skin friction that may possibly
develop between widely spaced blows.

The Wave Equation Analysis

Since the middle 1800s, dynamic pile-driving formulas have been
nsed to determine the static bearing capacity of piles as a function of
the resistance of the pile to penetration. At the present time, several
hundred such pile-driving formulas exist. These formulas are usually

*x;s;\
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obt iined by equating the energy delivered to a pile to the distance the
pile moves against a soil resistance. The results are not always reli-
able, and may over-predict or grossly under-predict pile capacities, and
therefore should be used with caution.

Dynamic resistance based on the wave equation analysis is a more
rational approach to calculating pile capacities. This method was first
put into practical form in 1962 by Smith (Ref 5). Results of the wave
equation analysis can be interpreted to give pile stress, the rate of
penetration, and the driving resistance.

The wave equation was later written into computer codes and the
descriptions and documentations can be found in numerous publications
(Ref 6 through 10). For the impact hammer, the computer code will solve
for the idealized system shown in Figure 2.

The VIBEWAVE Program

The original form of the Texas Transportation Institute (TTI) wave
equation analysis program (Ref 10) is used to model pile driving using
the vibratory driver. Numerous modifications were required. The first
modification was to model the idealized vibratory driver-soil-pile
system shown in Figure 3.

As can be seen in Figure 3, the first element is the "suspended
weight." Tt transmits its weight, W., and inertia force to the second
element called the "driver" through an "isolation spring." The isola-
tion spring has stiffness K,. The dead weight of the driver excludes
the rotating weights and gedrs, but includes the rest of the assembly as
well as the "head" or clamp which is to be fastened to the first pile
element. 1In the program, the mass of the rotating weights and gears, m
(total eccentric mass); the eccentricity, e; and the frequency, f (in
cycles per second, cps) are input separately.

The oscillatory vertical driving force imparted by the 'driver" has
a maximum value:

2
= +
Pmax m(a e w )

where: m = mass of rotating weights and gears (total eccentric mass)

a = acceleration which is calculated from the change in velocity
of the eccentric mass between time steps

e = eccentricity

w = angular velocity (in radians per second) which is related to
the frequency, f, by 2nf

f = frequency in cycles per second (cps)

The driving force varies sinusoidally with time, t, and is given as a
function of t:

P(t) = ma+me w2 sin wt
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1. Figure 2. Simulation of an impact hammer-pile-soil system.
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(

T8 .
.:l:lq.'ﬁ‘ 8
R L

o Y O O S et iy Wy Py P D R N AT A AR AT A CAT AT MY ol e
"- "A“"-.':?""'-l"?"h"!‘..:!' w. .‘q"ﬁ...:"' !'o‘.]g ‘.':',"a. .“..l 3,000 " b " A .' o 'S‘I...l L .'-\"‘n

i M + 9705



535
ol
N.h‘
-‘.h‘
B~
s
R Several minor changes are also made to the original program to reinitialize
' certain values for the vibratory driven pile.
Y, Predictions from the VIBEWAVE program are compared with the results of
"C: instrumented pile driving tests performed by NCEL in Coronado, California.
L
T
’ § DESCRIPTION OF FIELD TESTING
ai.'i
) Cone Penetrometer Test (CPT)
M
‘ y; The CPT was considered the appropriate technique for this test due
"y to the short lead time available for site investigation. Relative to
o~ ) other soil exploration methods, the CPT provides faster, more detailed
) data. However, it has the distinct disadvantage of not obtaining a soil
j:b sample for visual or lab inspection.
e Nine cone penetrometer test drillings were conducted for a total of
203 feet. The drillings were located on a grid established on the beach

W at the Naval Amphibious Base in Coronado, California. The area was ap-
- proximately 150 yards measured inland from high water by 600 yards mea-
sured parallel to the beach. Minimum depth to refusal was 7 feet in two
;?h? holes. Maximum depth to refusal was 30 feet. Continuous readings of

N tip bearing, sleeve friction, and pore pressure were obtained with depth.
ey Interpreted information such as soil behavior type, equivalent Standard

. Penetrometer Test (SPT) N values, D50, equivalent drained friction angle,
e and equivalent relative density was also provided.

4 The soil at the test site consisted mainly of very dense sand with
,f@ an average unit weight of about 127 pcf. On land, the water table was
"y at about 8 feet to 10 feet below ground level. The angle of frictional

vﬁ resistance of the sand as interpreted from the cone penetration data was
o about 45 degrees. A pile capacity curve was developed for the 8-5/8-inch-
[ diameter pile, assuming the pile plugs after penetrating three diameters.
;;{ Typical cone penetration test data and the corresponding pile capacity
%&ﬁ curve 1s shown in Figures 4 and 5, respectively.

Al
‘x$ Rate of Pile Penetration Versus Dynamic Driving Resistance
el

RZ The ultimate capacity of a pile can be estimated from the penetra-
‘ tion per blow when using an impact hammer. Formulas for dynamic driving
) resistance are outlined in Reference 7. The use of this method should
:*w; be supported by local experience or testing.
vy The first phase of tests were designed to demonstrate a relation-
k :: ship between rate of penetration and dynamic driving resistance. A

i Foster Vibro 1000 was used to drive a 20-inch-diameter pipe pile for
,J ' 4 feet. The rate of penetration was recorded for the 4-foot increment.
z': Dynamic driving resistance was recorded by removing the vibratory driver
%‘q and counting the number of blows for the next foot of penetration with
? :: an MKT DE-30 diesel impact hammer. The vibratory driver was then placed
o back on the pile and driving was continued for another 4 feet and so on
1V gl (Figure 6).

] Rates of penetratjon for the first 9 feet ranged from about 3 ft/min
g”ﬁ to 5 ft/min after which the rates dropped sharply to less than 0.5 ft/min.
D ::J'

L)

.l..

-

RS AP TR A RN A AR, |




T T TR T T W ERYRREYREATETEE T

TIP RESISTANCE

{Ton/ft"2)

LOCAL FRICTION
(Ton/ft"2)

5000

5

l
i
—
!
I

0 — 10 ft.

i’g:$ 20 ft.

8 DEPTH
(m) ﬁ

30 ft.

10

AV

A 12
P L 40 ft.

MAX. DEPTH 12.42m

14

&) Figure 4.

Typical CPT data at the test site.
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BN Figure 5. Pile capacity curve for an 8-5/8-inch-diameter pile
. at the test site.
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- w
(™ The data collected are summarized in Table 1. The maximum penetration ‘
. that the pile was able to attain with the Vibro 1000 ranged from 10 to !

Sﬁd 13 feet. This was attributed to the extremely dense soil conditions.

. "\v)

-

;:; Table 1. Observed Rate of Penetration Versus Dynamic

H1v Driving Resistance
)

ne

e a Depth Rate of Blow Count® | Bearing Capacityd

Qp' Pile Penetration

B 2 (ft) (ft/min) (blws/ft) (tons)

3

L
N 1 5-9 2.9 30 35
’ 10-11.5 0.3 36 40

e

J'.

Wl 2 5-9 5.1 25 31

e 10-11.5 0.2 45 48
» e
¥

it 3 5-9 4.6 22 29

L 5 10-12.8 0.3 40 44

o 13.8-14 0.03 48 53

. 4 5-13 1.2 40 "

|'..’

) % 20"¢ x 1/2" WT, open-end, steel pipe pile (¢ = outside diam.;

. WT = wall thickness).

fhf c Average rate for depth indicated; using Foster Vibro 1000 driver.

:k; d MKT DE30 diesel hammer.

o Engineering News Formula.
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Vi Instrumentation

AR The next phase of tests required instrumenting the pipe pile with

RN strain gages to record data during driving. Anticipating that a smaller

.§$ diameter pile could be driven to a depth of 25 to 30 feet with the vibra-

ﬁg tory pile driver, it was decided to use 8-5/8-inch-diameter pipe pile (a

"1 size readily available). An adapter was designed and fabricated to
allow driving the smaller diameter pile with both of the pile drivers

KN that are set up to drive 20-inch-diameter pipe piles (Figure 7). This

N section describes the procedures used to collect dynamic data.

ey Figure 7. Pile adapter.
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ﬁ% There was an opportunity a few months later for further testing in the same
‘ test area and in the surf near the test area. A Foster Vibro 1800 was used
ERY to drive an 8-5/8-inch-diameter open-end pipe pile. One of the objectives
o

of these tests was to verify whether a bigger driver would be able to pene-
trate the dense cobble layer encountered in previous tests. The Vibro 1800

g

-
-

3“ is rated at 65 tons driving force compared with the 35 tons driving force of
4&. the Vibro 1000. We also wanted to obtain dynamic driving data while driving
o in saturated soil conditions. An 8-5/8-inch-diameter instrumented pile was
W driven off the side of a roadway section of the Elevated Causeway (ELCAS)
IQ' which had been deployed at the Naval Amphibious Base Coronado, California
Q* (Figure 11). This beach is in the same general area as the test area.

» Rates of penetration were recorded simultaneously with the strain gage
) and thermocouple data. The depth to refusal on the beach was 23 feet. Maxi-
' mum depth to refusal in the surf was 12 feet after three separate attempts
o of driving in approximately 3 to 5 feet of water. In order to keep the pile
J: upright in the first few feet of driving, the crane had to keep tension on
o the driver until the pile was sufficiently set in the ground. This affected
*: the rates of penetration. Observed rates of penetration versus depth are

Ta shown in Table 3. Strain gage readings are shown in Figure 12. Comparable
i strain gage plots are not available for the first set of tests.

[

:: Table 3. Comparative Rates of Penetration for Pipe

;:? Piles Driven With Foster Vibro 1800 Driver

. N - ~ . . - R -

~:: Rate of Penetrationb

- Depth? (ft/min)

3 e .

v (fe) No. 1° No. 2 No. 3 No. &

b (beach) (surf) (surf) (surf)

h.'l L . I - I 1

N 1-2 - . - -

N 2-4 - 4.8 0.8 1.3

e 4-6 - 1.8 0.8 1.3

. 6-7 - 0.3 0.8 -

2 7-8 3.8 0.3 0.8 -

™ 8-9 4.0 0.7 0.8 -

"R 9-10 2.6 0.7 - -

: 10-11 1.4 0.8 - -

11-12 0.7 0.8 - -

"y 12-13 0.8 - - -

o 13-14 0.5 - ! - -

K 14-15 0.4 - - -

o 15-16 0.5 - - -

WE 16-17 0.3 - - -

L 17-18 0.3 - - -

o 18-19 0.5 - - -

7 19-20 0.3 - - -

o 20-21 0.2 - - -

s 21-22 0.1 - - -

K]

o, 28-3/8"¢, 3/8" WT, open-end pile; 30-ft length.

o (Ratns averag: ! over depth indicated.

‘3: Test results compared with predictions from VIBEWAVE program.
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Figure 12. Strain gage placement and recorded force histories for
an 8-5/8-inch-diameter test pile.
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Although the thermocouples were lost due to inadequate protection,
temperatures ranging from 400 to 500°F were recorded at the tip of the
pile by the time refusal was met.

COMPARISON OF MODEL PREDICTIONS WITH TEST DATA
Modeling the Test Piles

In the VIBEWAVE model runs, the 8-5/8-inch-diameter by 5/16-inch WT
(wall thickness) steel pipe pile was divided into 5-foot-long segments.

The results that will be discussed in the following sections are for the
pile driven with the Vibro 1800.

The weight of each rotating/vibratory element consists of an eccentric
gear with an eccentric weight of 217 pounds. There are four such elements
in the Vibro 1800. From the rated eccentric moment given for each hammer,
the rotating arm or eccentricity was estimated to be about 2.1 inches.
Although the driving frequencies of the vibratory driver were rated to be
1,000 to 1,600 cycles per minute (about 17 to 27 cps), only about 1,100 cpm
(18 cps) was noted during driving. The isolation springs, which are sets
of shear springs supporting the nonvibrating weight, have a spring constant
of 14 kips/in for the Vibro 1800.

The calculated forces for the idealized vibratory driver-soil-pile
system are shown in Figure 13. A compressive force is presented as a
positive value. The depth of penetration considered in both cases is
about 11 feet. This corresponds to about 180 seconds of driving in the
field. The calculated forces and displacements are for the soil-pile
system starting from the at-rest position.

The following sections discuss and compare the VIBEWAVE predictions
with results from the pile driven on the beach in Table 3, referred to
in this report as Test Pile 86.

Driving Forces

The Vibro 1800 driver is rated to give a maximum driving force of
65 tons. (The maximum driving force refers to the amplitude, which is
the crest to trough value of the force imparted by the oscillatory
weights and gears to the pile.) The results from the VIBEWAVE runs show
the maximum driving force to be within that range (Figure 13a).

Forces in the Pile

The load-cell in the 25-foot-long pile is located 2 feet below the
pile head. Four other gages were spaced at 5-foot intervals from the
load cell. The readings from the strain gages (recorded in microstrain)
were converted to forces, in kips, by multiplying by the elastic deulus
of steel and the cross-sectional area at the gage location (8.4 in”).

Recorded force histories for Test Pile 86 are shown in Figure 12.
This is typical for most of the piles tested. From Figure 12a, for the
case of the test pile driven on land at an 11-foot depth of penetration,
the maximum amplitude of the force measured at the load cell is between
-20 and 80 kips. A comparison of the forces recorded at each strain
gage indicates a consistent stress wave propagating along the pile.
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K'ed In comparing the magnitude of the calculated and recorded forces at
the top of the pile (Figure 14), the recorded is smaller. Any number of

e factors could account for the discrepancies, including driver performance,

r@ instrumentation performance, or the accuracy of the computer model. It
1s interestin o note that on one or two of ever our load cycles

I is int ting t t h ly f y f load cycl

b&. imparted to the system show up distinctly in the recorded waveform.

3 This 1s due to the wave reflecting back up the pile, interfering with

A :4 p

: subsequent waves traveling down. From a parametric study described

XX below, it appears that the waveform can also be changed by varying the

‘“\ stiffness of the isolation spring.

b' When the calculated and recorded forces near the tip of the pile

ﬁq (Figure 15) are compared, the calculated forces are again larger. More

:L damping is probably occurring in the field than expected. Note the simi-
larity in waveforms between the calculated and recorded force histories.

y
g Note the relative differences in the magnitude of the force between
W &
‘ pile top and pile tip. The force in the last pile segment is smaller

Wiyl p p p g

:m than that at the top for the calculated results. This is due to the

RLA" skin resistance which was applied on the embedded segments of the pile.

e This reduction is not apparent in the recorded results. The model does

]

f not as yet account for the significant reduction in side friction that

W~ occurs during driving.

&

:“5 Rate of Penetration

iy

*j The predicted penetration rate is obtained from Figure 16 which
shows the displacement-history of the pile point. The rate of penetra-

p y p p P

53X tion is about 0.81 in/sec or about 4 ft/min. This compares favorably

i with the range of 4 ft/min to 1.4 ft/min recorded for the penetration

» g p

: depth of 9 to 11 feet (see Table 3). Although the results look pro-

] mising, it is hoped that this predictive method can be further improved

0" g P P

;hﬂ using information obtained from piles driven to a greater depth using

D) the vibratory driver.

e From a parametric study, it appears that some values of the isola-

W tion spring stiffness can be determined to give a good prediction of

" penetration rate for the pile at this site. It can be expected that

'\2 this value will change with different natural frequencies of different

%; hammer-soil-pile systems.

{

) Behavior of the Isolation Spring

CQ':

ﬂk' As described earlier, the isolation spring is made up of a set of

o elastomeric shear springs which has a tendency to soften at higher temp-

o pring y g ¥

o eratures. In practice, it 15 not uncommon for the elastomer to fail

Y while driving. This failure (of the isolation spring and hence the

) vibratory driver) can be caused by underestimating: (a) the effects of

q& temperature, and/or (b) the magnitude of the dynamic force that can be

b“ induced while driving. Although field verification is not yet available,

ol it appears that VIBEWAVE can estimate the latter as seen in Figure 13b.

"

o Parametric studies have shown that for a spring stiffness of less than

_' 10 kips/in the elastomer is always in compression. The displacement

W experienced by the isolation spring is shown in Figure 17.
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CONCLUSIONS
Field Tests

Valuable information was gained from the field tests. Experience
gained from the setup and performance of the tests will help improve the
design of future experiments.

The extremely dense sand conditions found in the test area limited
both the type and quantity of data collected. However, the data that
were collected were satisfactory for comparison with the computer model
predictions.

Computer Simulation

The wave equation appears to offer a feasible method of analyzing
vibratory pile driving. It was found that a proper simulation of the
vibratory driver is critical to predicting correct results. Most
notable is proper modeling of the isolation spring stiffness.

Interpretation of the field results with the VIBEWAVE program has
helped to clarify areas where more work will be required. To improve
and refine the predictive method, it is necessary to collect data from
pile driven to greater depths. Using the vibratory pile driving record
in conjunction with the computer model, it appears that a practical
solution to predicting the driveability and bearing capacity of vibra-
tory driven piles is possible.

RECOMMENDATIONS

Based on the findings of this preliminary study, it is possible to
define and make recommendations on the areas that need to be researched
before a valid understanding of the vibratory pile driving process can
be reached. The following recommendations are made:

Vibratory Pile Driving Using VIBEWAVE:

1. Eveluate the effects of different driving frequencies and
amplitudes, eccentric moments (which are determined by the eccentric
weights and rotating arms), and properties of the other components for
the various types of vibratory drivers.

2. Evaluate the performance of other types (apart from Foster's)
of vibratory drivers in order to determine if the mechanism of driving
is the same. It may be that some drivers depend more on the suspended

weight for increased efficiency while others might rely more on the magni-
tude of the eccentric moment or the driving frequency.

™ 4

" . Manufacturers of vihratory drivers should consider including
information regarding the eccentric weights (including the gears), and
. : . . . .
‘ the eccentricity and the stiffness of the isolation spring and/or the
Y suspension system if any, in their brochures.
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Improvement of the VIBEWAVE Program

To more accurately model the vibratory hammer-soil-pile system, it
may be necessary to modify the program to accept a nonlinear spring,
especially for the more flexible elements. For example, the isolation
spring may be somewhat linear in tension, but it is not so in compres-
sion. It may be necessary to develop a temperature-dependent pile driv-

ing model to properly model the eff =-ts of the high temperatures observ-
ed in the tests.

Soil-Pile Interaction During Vibratory Driving

1. Determine the effects of grain size and shape of coarse-grained
soil on vibratory driving.

2. Compare the pile capacity of a vibratory driven pile and an
impact driven pile.

3. Determine the effects of temperature in the driving on soil
resistance under dry and wet conditions.

4. Define the effects of the water table on driving.

5. Determine the amount of resistance (or reduction in static
resistance) at the side and the pile point while driving. This will
require driving deeper piles and monitoring the stresses along the entire
length of the pile while driving.

Design of a More Efficient Vibratory Hammer

Consider designing a system with a variable driving frequency and
variable isolation spring stiffness, as well as variable eccentric
weights and rotating moment arms.
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tvpe of documents you are presently receiving. If you are satistied, throw this card away (or file it tor later
- reference).

o If vou want to change what vou are presently receiving:

' .

. ® Dclete muark oft number on bottom ot {abdl

j o Add  arcle number on hist,

-

« ® Roemove my name trom all vour hists check bov on vt

)
b ® Change myv address  Dine out incorrect hne and write i correction (PLEASE ATTACH LABEL).
" goom:
N ® Number of copies should be entered atter the ritle of the subject categories vou seledt

N Fold on hine below and drop in the muail

“

- Note: Numbers on label but not listed on questionnaire are for NCE L use only, please ignore them.
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Fald on hine and stapie
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. DEPARTMENT OF THE NAVY
- POSTAGE AND FEES PAID
; NA:;;TCW'EL E':‘G'NEER':‘G :?fog:olgm’ DEPARTMENT OF THE NAVY
- HUENEME, CALIFOR 5003 DoD.316
: OFFICIAL BUSINESS
_, PENALTY FOR PRIVATE USE. $300
X 1 IND-NCEL.2700/4 (REV. 12-73)
- O930-LL-L70-0044
'l
{
J
‘P Commanding Officer
S Code LO8B
X Naval Civil Engineering Laboratory
{ Port Hueneme, California 93043-5003
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